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Abstract
1. How animals use the diel period (24- h light–dark cycle) is of fundamental impor-

tance to understand their niche. While ecological and evolutionary literature 
abound with discussion of diel phenotypes (e.g. diurnal, nocturnal, crepuscular, 
cathemeral), they lack clear and explicit quantitative definitions. As such, infer-
ence can be confounded when evaluating hypotheses of animal diel niche switch-
ing or plasticity across studies because researchers may be operating under 
different definitions of diel phenotypes.

2. We propose quantitative definitions of diel phenotypes using four alternative 
hypothesis sets (maximizing, traditional, general and selection) aimed at achiev-
ing different objectives. Each hypothesis set is composed of mutually exclusive 
hypotheses defined based on the activity probabilities in the three fundamental 
periods of light availability (twilight, daytime and night- time).

3. We develop a Bayesian modelling framework that compares diel phenotype 
hypotheses using Bayes factors and estimates model parameters using a mul-
tinomial model with linear inequality constraints. Model comparison, parameter 
estimation and visualizing results can be done in the Diel.Niche R package. A 
simplified R Shiny web application is also available.

4. We provide extensive simulation results to guide researchers on the power to 
discriminate among hypotheses for a range of sample sizes (10–1280). We also 
work through several examples of using data to make inferences on diel activ-
ity, and include online vignettes on how to use the Diel.Niche package. We 
demonstrate how our modelling framework complements other analyses, such as 
circular kernel density estimators and animal movement modelling.

5. Our aim is to encourage standardization of the language of diel activity and bridge 
conceptual frameworks and hypotheses in diel research with data and models. 
Lastly, we hope more research focuses on the ecological and conservation impor-
tance of understanding how animals use diel time.

K E Y W O R D S
cathemeral, crepuscular, diel, Diel.Niche, diurnal, nocturnal, temporal activity, temporal 
niche
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1  |  INTRODUC TION

The rise and setting of the sun causes shifts in environmental con-
ditions (e.g. temperature, humidity) and ecosystem processes (e.g. 
pollination, dispersal) that affects nearly all species on Earth (Cox & 
Gaston, 2023a; Gaston, 2019; Gaston et al., 2023). Animal groups, 
including insects, amphibians, birds, fish, molluscs and mammals, 
are well known to be influenced by the changes associated with 
the light–dark cycle (Anderson & Wiens, 2017; Flury & Levri, 1999; 
Hut et al., 2012; Kronfeld- Schor & Dayan, 2003; Saunders, 2012). 
An animal's diel activity has long been considered a component 
of an animal's niche (Carothers & Jaksić, 1984; Hutchinson, 1957; 
Kronfeld- Schor & Dayan, 2003; Levy et al., 2019; Pianka, 1973; 
Wiens et al., 2010). Yet, research on how animals use time within the 
diel period (24- h light–dark cycle) has until recently been an under-
appreciated focus of study (Anderson & Wiens, 2017; Carothers & 
Jaksić, 1984; Gaston, 2019; Kronfeld- Schor & Dayan, 2003; Wiens 
et al., 2010).

Among mammals, a species' diel activity or main time of day 
at which individuals display locomotor activity (Hut et al., 2012) 
has been viewed as a fixed behavioural trait (Levy et al., 2019) 
constrained by evolution, morphology and physiology (Anderson 
& Wiens, 2017; Hall et al., 2012). Major shifts in a species' diel 
niche (e.g. nocturnal → diurnal) have been predicted from ecologi-
cal theory (Schoener, 1974a, 1974b) and observed (Kronfeld- Schor 
& Dayan, 2003) to be rare. Partly for these reasons, mammals 
are often attributed a single diel niche (e.g. diurnal; Mittermeier 
& Wilson, 2009; Nowak & Walker, 1999). Such a categorization 
makes the implicit assumption that all individuals—across popula-
tions and regardless of environmental conditions—would maintain 
this diel niche to optimize fitness (e.g. via foraging, predation risk 
and reproduction) based on their morphological and physiological 
traits.

However, recent studies have shown flexibility in mammals' cir-
cadian regulation of their physiology (Riede et al., 2017; van der Veen 
et al., 2017) which allows for more adaptability in diel activity than 
previously thought (Gaston, 2019; Rivera et al., 2022). Furthermore, 
there is growing empirical evidence that many mammal species alter 
their diel activity in response to environmental context (abiotic and 
biotic), including temperature (Gallo et al., 2022; Hut et al., 2012), 
season (Farris et al., 2015; Hut et al., 2012), anthropogenic activ-
ity (Gaynor et al., 2018; Moll et al., 2018), landscape features (Gallo 
et al., 2022; Rivera et al., 2022) and intra-  and inter- specific compe-
tition (Cunningham et al., 2019). Translating whether these changes 
in activity can be characterized as a shift in an animal's diel niche 
(e.g. nocturnal → diurnal) depends on how we define the possible 
phenotypes.

The traditional diel phenotypes for tetrapods are diurnal, noctur-
nal and crepuscular (Anderson & Wiens, 2017). A species is commonly 
described as such based on the majority of their activity occurring 
in a single distinct period of light availability (daytime, night- time or 
dawn dusk respectively). Less often considered, but an important 
complementing diel phenotype, is cathemerality (‘through the day’; 

Cox & Gaston, 2023b; Cox et al., 2023), which is an even amount of 
activity across the entire diel period, or a large amount of activity 
across multiple time periods (e.g. day and night; Tattersall, 2008). 
For many studies, there is little consideration for what constitutes a 
species being assigned one of these diel phenotypes.

Commonly, researchers plot activity curves and assign a spe-
cies a diel phenotype based on visual interpretation (e.g. Ridout 
& Linkie, 2009). Studies that consider how species change their 
probability of activity through the day (Gallo et al., 2022; Gaynor 
et al., 2018) often do not assess switching among theoretically moti-
vated diel phenotypes (e.g. diurnal, nocturnal etc.; Hut et al., 2012). 
We see three issues with these approaches. Foremost, without 
explicit definitions, we cannot propose hypotheses about diel phe-
notypes that are directly evaluated with empirical observations. 
Second, the lack of explicit quantitative definitions of diel pheno-
types means that comparisons across studies may be inappropriate, 
because researchers may be operating under different definitions. 
This clearly complicates the evaluation of diel niche switching across 
studies. Third, qualitative interpretations of diel phenotypes are 
without measures of uncertainty describing how confident we are 
that a species is using a given diel phenotype. Our work aims to over-
come these three concerns.

Research on the diel activity of wild animals is becoming in-
creasingly prevalent (Supporting Information S1, Figure S1). This is 
partly due to the growing use of camera traps (Gilbert et al., 2022), 
which can continuously sample the spatio- temporal activity of 
small to large non- volant animals throughout the 24- h period (Frey 
et al., 2017). Recently, several thoughtful conceptual frameworks 
have proposed multiple lines of inquiry focused on diel niche hy-
potheses (Gaston, 2019; Gilbert et al., 2022). To help move animal 
diel research in the direction of advancing our understanding related 
to these conceptual frameworks, we need to connect diel terminol-
ogy in ecology and evolution with hypotheses that can be tested 
using empirical data.

We propose a quantitative framework for defining diel pheno-
types and probabilistic models that can be evaluated with empir-
ical data and provide a measure of model hypothesis uncertainty. 
Importantly, we propose a framework that is appropriate even at 
relatively small sample sizes. This is critical for being able to evaluate 
the diel niche of rare and difficult to detect species. Furthermore, 
we offer multiple hypotheses sets that accomplish alternative 
objectives.

We implement our framework in the new Diel.Niche R pack-
age (R Core Team, 2023) available on Github at https:// github. com/ 
diel-  proje ct/ Diel-  Niche -  Modeling. The fundamental elements of 
the package are (1) defining diel phenotypes, (2) model comparison 
among diel hypotheses using Bayes factors and (3) estimating prob-
abilities of twilight (dawn and dusk), daytime (daylight hours) and 
night- time (night hours) activity. Users may use all three elements, 
or choose to estimate probabilities outside of this framework and 
only use the package to define their results according to preset 
diel phenotypes. Furthermore, users can modify existing hypothe-
ses and also define completely new hypotheses. For non- R users, 
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    |  3GERBER et al.

a visual online Shiny application is available for simple analyses  
(https:// shiny. celsrs. uri. edu/ bgerb er/ DielN iche/ ). We hope this 
work will encourage consistency in definitions for appropriate com-
parisons across studies.

2  |  E XPL ANATION OF THE METHOD

2.1  |  Defining diel phenotypes

We define diel phenotypes based on the activity probabilities of the 
three fundamental light availability periods: twilight (tw), daytime (d) 
and night- time (n). We refer to these time periods as ‘diel periods’ 
throughout. The sample data are thus a vector of observed inde-
pendent detection frequencies in each period, as y =

[
ytw yd yn

]
 

respectively. These frequencies depend on the respective probabili-
ties of ptw, pd and pn.

We translate each diel phenotype as a probabilistic multinomial 
model with linear inequality constraints on the probabilities (Heck 
& Davis- Stober, 2019) following the implied relationship under the 
given phenotype. The inequalities specify which probability com-
binations for the diel period are defined as a certain phenotype. 
Specifically, we define inequality constraints by matrix A and vector 
b, such that A� ≤ b, where � =

[
ptw pd

]
. The sum of the three proba-

bilities is always one, such that there are two free model parameters, 
where pn is derived as 1 − ptw − pd.

As an example of how constraints are used within this modelling 
framework, let us define a phenotype where we are interested in 
whether an animal is primarily diurnal, such that the majority of its 
activity occurs during the daytime. This phenotype is general with-
out any specific constraints on how much activity occurs during the 
twilight or night- time. Simply, the probability of activity in the day-
time is greater than the activity probability during twilight or night- 
time. We can define this phenotype as a set of two inequalities,

To translate these into the above inequality setup, we redefine 
Equation (1a) as,

and, given that pn = 1 − ptw − pd according to our earlier definition, 
Equation (1b) is,

The constants within the parentheses on the left of the inequal-
ity sign are packaged into matrix A and the constants on the right are 
packaged into vector b, such that

Altogether, the full inequality phenotype statement is,

We use the same procedure to specify a number of phenotypes 
that together represent four complete hypothesis sets with mutu-
ally exclusive diel phenotype hypotheses: Maximizing, Traditional, 
General and Selection (Figures 1 and 2). The first three hypothesis 
sets are strictly on how much an animal uses each diel period, while 
the fourth (Selection) is based on the selection of a diel period, where 
the probability of use is greater than the proportional amount of time 
available in a diel period (Gallo et al., 2022; Northrup et al., 2022). 
The file Supporting Information S2 describes and mathematically 
defines the set of inequalities for each phenotype.

2.2  |  Diel hypothesis sets

We propose three hypothesis sets aimed at characterizing the 
probability of activity or use in the three diel periods (Maximizing, 
Traditional, General; Table 1). To discriminate among the hypotheses 
of diurnal, nocturnal and crepuscular in regard to how much activity 
is distributed among their respective diel periods, we believe it is 
logical to define the hypotheses with equivalent thresholds or con-
straints. This equivalence means that the hypotheses are standard-
ized in regard to how much activity is required in the respective diel 
periods to be called diurnal, nocturnal or crepuscular. Since the focus 
is on estimating the amount of activity, these hypotheses sets do not 
account for the different available amount of time in the three peri-
ods. We are estimating the use of the three diel periods within the 
context of the study design and sampling period. This has important 
consequences, especially for being defined as crepuscular as the twi-
light period is relatively short, which we discuss in the Caveats sec-
tion. To move beyond use and to quantify use relative to availability, 
we also propose a fourth hypothesis set (Selection) that accounts for 
the available amount of time in the diel periods to evaluate selection 
(i.e. disproportional use, given availability; Table 1).

The Maximizing hypothesis set includes three diel phenotype 
hypotheses (Figure 1; Crepuscular Max, Diurnal Max and Nocturnal 
Max) with the objective of evaluating which diel period is used most. 

(1a)ptw ≤ pd,

(1b)pn ≤ pd.

(2)

ptw≤ pd

ptw−pd≤ 0, such that

(1)×ptw+(−1)×pd≤ 0,

(3)

pn≤ pd

1−ptw−pd≤ pd

1−ptw−pd−pd≤0

(−1)×ptw+(−2)×pd ≤ −1.

(4)A =

⎡
⎢⎢⎣

1 −1

−1 −2

⎤
⎥⎥⎦
,b =

⎡
⎢⎢⎣

0

−1

⎤
⎥⎥⎦
.

(5)

A�≤b

⎡
⎢⎢⎣

(1)×ptw+(−1)×pd

(−1)×ptw+(−2)×pd

⎤
⎥⎥⎦
≤

⎡
⎢⎢⎣

0

−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ptw−pd

−ptw−2pd

⎤
⎥⎥⎦
≤

⎡
⎢⎢⎣

0

−1

⎤
⎥⎥⎦
.
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4  |    GERBER et al.

As such, there is no hypothesis about activity across multiple diel 
periods (i.e. cathemeral). The Traditional hypothesis set includes four 
diel phenotype hypotheses (Figure 1; crepuscular, diurnal, nocturnal, 
traditional cathemeral) that aim to capture the general interpreta-
tion of these hypotheses from the literature. Crepuscular, diurnal 
and nocturnal are defined based on having at least 0.80 probability 

(threshold probability, �1 = 0.80) in their respective diel periods. If an 
animal is not mostly active in one period than it is defined as tradi-
tional cathemeral; this occurs when either two or three diel periods 
are used more than 1 − �1. The logic behind the threshold of 0.80 is 
that an animal is predominately active in one diel period, but is not 
so strict that there can be some moderate amount of activity outside 

F I G U R E  1  Diel niche hypothesis sets (first column, from top to bottom: maximizing, traditional, general) as defined by the probability of 
activity during daytime, night- time and twilight. For each hypothesis in a set, examples of circular kernel density estimates are plotted over 
the 24- h period. Note that the general hypothesis set (third row) includes the diel hypotheses of diurnal, nocturnal and crepuscular, which 
are plotted with the traditional hypothesis set (second row).

F I G U R E  2  The selection hypotheses (left) as defined by the disproportional amount of activity during twilight, daytime and night- time, 
given their respective available amount of time in each period (availability defined as 0.04, 0.48 and 0.48 for the respective diel periods). 
The middle plot depicts the probability that the generating model is most supported by parameter combinations when the sample size is 100 
total observations. The right plot comprises results of the probability the generating model was most supported across varying sample sizes. 
Complementary simulation results are found in Supporting Information S1, Figure S4.
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    |  5GERBER et al.

of this period. While �1 = 0.80 is the default value in Diel.Niche, 
it can easily be modified by a user when fitting these hypotheses to 
their data.

The General hypothesis set includes seven diel phenotype hy-
potheses (Figure 1). The diurnal, crepuscular and nocturnal hypoth-
eses are defined the same as in Traditional. The main difference is 
the separation of the probability space of traditional cathemeral into 
four more specific hypotheses: general cathemeral, crepuscular–
nocturnal, diurnal–nocturnal and diurnal–crepuscular. The general 
cathemeral hypothesis—which represents a subset of the parameter 
space taken by the previously mentioned traditional cathemeral—
aims to define when an animal uses all three diel periods at equal to 
or more than a minimum amount (i.e. �2 ≤ ptw, pd , pn ≤ �1). We de-
fined the lower threshold probability as �2 = 0.10, such that we con-
sider it important to differentiate animal activity when a diel period 
is used at least this much (Figure 1). However, if only two diel peri-
ods are used above �2, then we classify this activity using one of the 
binomial hypotheses (crepuscular–nocturnal, diurnal–nocturnal and 
diurnal–crepuscular). For example, suppose a species is active mainly 
during the day ( pd = 0.78), but is also relatively active during twilight 

( ptw = 0.16), and not very active at night ( pn = 0.06). We would de-
fine this activity as diurnal–crepuscular because ptw, pd ≥ �2, while 
pn < 𝜉2. However, if night activity was also higher than �2, such that 
pd = 0.70 and ptw, pn = 0.15 then we classify this activity as general 
cathemeral because a moderate to large amount of activity is occur-
ring in all three diel periods. In summary, the Traditional hypothesis set 
distinguishes between unimodal and multimodal diel activity, while 
the General set distinguishes among unimodal, bimodal and trimodal 
activity. The General hypothesis provides a more clear definition of 
cathemerality compared to the original description (Tattersall, 2008) 
by separating bimodal and trimodal activity periods.

The Selection hypothesis set includes seven diel phenotype hy-
potheses (Figure 2; day, day–night, day–twilight, equal, night, night–
twilight and twilight selection). Each are defined based on an 
inputted (i.e. not estimated) amount of proportional time available to 
an animal in each diel period (pavail = [ pav.tw, pav.d ]; the available time 
in the night period is derived as, 1 − pav.tw − pav.d). As such, the com-
bination of parameter values defined as a certain phenotype and the 
parameter space area of each phenotype will change based on pavail. 

The values of pavail will depend on the day of the year and location of 
sampling. Each phenotype is defined based on a single diel period or 
multiple diel periods being used greater than available. For example, 
diurnal selection occurs when pd

pav.d
> 1 and ptw

pav.tw
,

pn

pav.n
≤ 1. The equal se-

lection hypothesis is different in that it tests the equality among the 
probabilities and pavail.

We offer these definitions as a means to standardize the diel ac-
tivity hypothesis language. Each hypothesis set is preset and avail-
able for use in Diel.Niche. The function ‘hyp.sets’ can be used to 
list the code names for each hypothesis and can be used to pass to 
the ‘triplot’ function to provide a 3D plot of the parameter space 
(Figure 1; first column) as,

hyps <- hyp.sets(‘General’)  
triplot(hyp=hyps)

This is known as a ternary plot that describes three variables that 
sum to a constant value and has been long used to characterize soil 
ratios (Shepard, 1954). The package also allows the specification of 
new hypotheses (see ‘Section 6’). Researchers interested in changing 
the probability threshold values ( �1 and �2) or defining novel hypoth-
eses should report these in their research.

2.3  |  Modelling and estimation

Applying inequality constraints on the parameters of multinomial 
models is a well- known modelling and estimation issue in statistics 
(Silvapulle & Sen, 2011). Implementing these models is often chal-
lenging in general purpose software. We used a Bayesian approach 
and take advantage of a general Gibbs Markov- Chain Monte Carlo 
(MCMC) sampler developed and implemented in the R package 
multinomineq (Heck & Davis- Stober, 2019). The sampler is highly 
efficient and implemented in C++, making the MCMC sampler rela-
tively fast compared to general purpose software implementations. 
Generalized model specification and the likelihood function are fully 
detailed in Heck and Davis- Stober (2019). The core modelling and es-
timation in the Diel.Niche package are done using wrapper func-
tions that implement more general functions of the multinomineq 

Hypothesis set Objective

Maximizing Evaluate which diel period (daytime, night- time, twilight) is used the most. 
No consideration of bimodal or trimodal phenotypes, or the available 
time in each diel period

Traditional Evaluate the support of standard diel phenotypes in the literature based 
on use of each diel period. No consideration of bimodal phenotypes or 
consideration of available time in each diel period

General Evaluate support of the standard diel phenotypes based on use of each diel 
period with separation between bimodal and trimodal phenotypes. No 
consideration of available time in each diel period

Selection Evaluate the disproportional use or selection of diel periods by 
incorporating the available time in each diel period while considering 
bimodal phenotypes

TA B L E  1  Hypothesis sets and their 
objectives.
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6  |    GERBER et al.

package. In terms of model parameter (�) prior specification, prob-
abilities are given a Dirichlet prior distribution with a truncated 
support that is defined by the constrained parameter space (Heck 
& Davis- Stober, 2019). The default hyperparameters used in Diel.
Niche for the prior are shape parameters of 1 for each free model 
parameter. This is equivalent to a multiparameter uniform prior for 
each parameter, which is thus a very uninformative prior.

Model comparison is done via Bayes factors (Berger, 2013) for 
models with inequality constraints (Klugkist & Hoijtink, 2007), which 
implicitly provides a trade- off between model fit and complexity. 
Each model within a hypothesis set requires a prior to compute pos-
terior model probabilities from the Bayes factors. Diel.Niche uses 
a default of equal weight among the set, but this can be changed. 
For example, if the literature attributes a species as nocturnal, a re-
searcher may want to increase the prior of the nocturnal hypothesis. 
The prior will therefore depend on the goal of the study.

3  |  THINGS TO CONSIDER BEFORE USING 
THIS METHOD

3.1  |  The data

The study of diel activity describes when behavioural actions occur 
within the 24- h light–dark cycle. However, capturing all animal be-
haviours is generally impossible without direct and continuous 
behavioural sampling. This is often not possible for many species 
that cannot be followed to record behavioural observations with-
out changes in animal behaviour occurring due to human presence. 
Even when individual animals can be followed, tracking continuously 
over many 24- h periods is logistically infeasible. Here, we focus on 
the traditional definition of diel activity in terms of animal move-
ment (Hut et al., 2012) as it is a fundamental behaviour to ecosystem 
functioning and species survival (Tucker et al., 2018). Increasingly, 
high- frequency GPS telemetry is used to sample the location and 
movement of many species. These data sets could be very useful 
to estimate diel activity, especially as behavioural state modelling 
may help separate when and where specific behaviours are occur-
ring (Michelot & Blackwell, 2019). This would allow diel activity to 
be separated by movement and behaviour types, rather than move-
ment alone. Limitations of these data include the (1) expense in 
tracking many individuals in a population to gain a population- level 
inference, (2) difficulty in trapping many rare or small species, which 
are not readily or legally able to be trapped and (3) morphology of 
some species which poses challenges for external attachment (e.g. 
neck collars) thereby necessitating possibly risky surgery for a trans-
mitter to be implanted.

The type of data that primarily motivated this work was species 
detections from camera traps. However, any spatially fixed technol-
ogy that samples species activity throughout the 24- h period contin-
uously is applicable. This could include autonomous audio recording 
units, where species can be identified and calling conveys an import-
ant activity. The fundamental data unit we are considering is a set 

of detection frequencies (y). Considering common camera trap sam-
pling designs, where a set of n cameras are deployed at unique spa-
tial locations over a period of interest (e.g. a climatic season), y may 
be an aggregation of detections across all cameras for this specified 
period of time. Thus, inference is at the study area and sampling pe-
riod level. However, if enough data are available, inference could be 
made either at the camera trap level or among a subset of cameras 
within a study area (e.g. cameras placed in different habitat types).

We assume that dependencies in the data have been removed, 
such as temporal autocorrelation among a species' detections at a 
sampling location. Thus, frequencies of detections during twilight, 
daytime and night- time are independent. For camera trap sampling, 
it is common to have several to many sequential photographs of the 
same individual at the same location. Commonly, correlation is re-
moved by subsetting data to exclude detections within a specified 
period of time (e.g. 10, 15, 30 min; Farris et al., 2015). A more quan-
titative approach would be to test this correlation using lorelograms 
(Iannarilli et al., 2019).

Of fundamental importance is the classification of each inde-
pendent detection into the appropriate diel period. Fortunately, this 
can be determined if you know the date, time and spatial location 
of a given sample. This information can be used to calculate the 
start and end of various sunlight phases (e.g. sunrise, sunset, dusk) 
and are implemented in R with the suncalc package (Thieurmel & 
Elmarhraoui, 2019). We suggest samples be assigned to the three 
diel periods following astronomical definitions, as shown below.

• Twilight: The sample occurred during either dawn or dusk. Dawn is 
the time between the start of morning astronomical twilight (i.e. 
the sun is 18 below the horizon) and sunrise (i.e. the top of the sun 
is at the horizon). Dusk is the time between sunset and the end 
of evening astronomical twilight. These definitions represent the 
entire twilight period, which separates day from night.

• Daytime: The sample occurred during the day, which is the time 
between sunrise and sunset.

• Night- time: The sample occurred during the night, which is either 
between midnight of that day and the start of morning astronom-
ical twilight or between the end of evening astronomical twilight 
and midnight of the following day.

Using this classification scheme makes it possible to generate 
a frequency table of detections that can then be used within the 
Diel.Niche package.

3.2  |  Hypothesis discrimination

Prior to implementing this framework, it is important to understand 
how sample size affects the ability to discriminate among hypoth-
eses within a set. For each of our four hypothesis sets, we simulated 
4000 data sets under each hypothesis within a set at a wide range 
of total samples sizes (10, 20, 40, 80, 160, 320, 640, 1280; 

3∑
i=1

yi). We 
fitted each data set and estimated the posterior model probability 
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    |  7GERBER et al.

of the hypothesis generating the data; each model was given equal 
prior weight. Since each hypothesis is mutually exclusive (i.e. non- 
overlapping defined parameter space), model uncertainty will be 
highest when the true probability parameters are near the boundary 
of a hypotheses parameter space and adjacent to another hypoth-
eses parameter space. This will occur more often with hypotheses 
with small parameter spaces (e.g. General hypotheses). We consid-
ered how this would alter model selection and certainty by only 
simulating data such that hypotheses parameter spaces are sepa-
rated by at least 0.1 and 0.2 (Supporting Information S1, Figure S2). 

Lastly, we explicitly demonstrate how the arrangement of hypoth-
eses' parameter space affects the ability to identify the hypothesis 
generating the data. To do so, we use the Selection hypothesis set to 
simulate 200 data sets with a sample size of 100 for each combina-
tion of parameter values (�) at increments of 0.05 and estimate the 
probability the generating hypothesis is most supported within the 
set. We set pavail = [ 0.04 0.48].

We found the ability to identify the generating model with the 
most support (i.e. highest posterior model probability) to vary by 
hypothesis set (Figures 2 and 3; Supporting Information S3 and S4).  

F I G U R E  3  Simulation results of the probability the generating model was most supported across varying sample sizes and the extent of 
separation in probability space between hypotheses within a hypothesis set. Increasing separation values indicate more difference in probability 
values between hypotheses used to simulate data. Complementary simulation results are found in Supporing Information S1, Figure S3.
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8  |    GERBER et al.

Considering the Maximizing hypothesis set, 320 independent sam-
ples were required to obtain a 95% probability that the most sup-
ported model in the set was the generating model. There was little 
variation by hypothesis because all hypotheses had the same area 
of parameter space and length of parameter space adjacent to an-
other hypothesis. We also found that when separating hypotheses 
by a probability of 0.1 and 0.2, only 40 and 20 samples, respec-
tively, were needed to obtain a 95% probability. Thus, as probabili-
ties are further from equal (ptw = pd = pn = 0.333), the easier it is to 
discriminate among the hypotheses in the Maximizing set with high 
probability.

Considering the Traditional hypothesis set, 10 independent sam-
ples were needed to obtain a 95% probability that the most supported 
model in the set was the generating model for the crepuscular, diur-
nal and nocturnal hypotheses (Figure 3; Supporting Information S1, 
Figure S3). There was considerably more model uncertainty for the 
traditional cathemeral hypothesis. This hypothesis required 640 
samples to achieve the same probability. However, when separating 
hypotheses by a probability of 0.1 and 0.2, only 80 and 40 samples 
were required respectively. Thus, in cases where traditional cathem-
eral hypothesis probabilities are more equal, less data are needed to 
identify the data generating hypothesis with high probability.

Considering the General hypothesis set, 160 independent 
samples were required to obtain a 95% probability that the most 
supported model in the set was the generating model for the cre-
puscular, diurnal and nocturnal hypotheses (Figure 3; Supporting 
Information S1, Figure S3). The bimodal hypotheses required 640 
samples, while 1280 samples were still not enough for the cath-
emeral general hypothesis to obtain a 95% probability of support. 
Again, separating the hypotheses increases the ability to discrim-
inate among them. Since these hypotheses have less parameter 
space and more adjacency to other hypotheses parameter space, 
discriminating among them will require larger sample sizes compared 
to hypotheses of the other sets. For the cathemeral general hypoth-
esis, there is also higher implicit variance in the probabilities as they 
get closer to 0.5, which also makes it harder to discriminate against 
the other hypotheses.

Considering the Selection hypothesis set, 1280 independent 
samples or more were required to obtain a 95% probability that the 
most supported model in the set was the generating model (Figure 2; 
Supporting Information S1, Figure S4). The twilight selection hy-
pothesis was more easily identified as the generating model for 
smaller sample sizes because it has the largest parameter space area. 
These results would suggest this hypothesis set to be only moder-
ately useful to many realistic sample sizes. However, looking at how 
the probability of the generating model being most supported varies 
throughout the parameter space, we see a large set of parameter 
values where it is easy to identify the generating model (probabil-
ity near 1) at a sample size of 100 (Figure 2). The ability to identify 
the generating model in this hypothesis set and all others depends 
strongly on how close the true probabilities are to one or more other 
hypotheses, which depends on the area of parameter space for the 
hypothesis (Supporting Information S1, Figure S5).

3.3  |  The unconstrained model

What is the benefit of constraining model parameters? In other 
words, why not fit an unconstrained multinomial model, which can 
more easily be specified hierarchically to link probabilities of activ-
ity to spatial temporal covariates (see Gallo et al., 2022)? The main 
reason is that our aim is to focus on a priori definitions of diel phe-
notypes, so that we can offer them as hypotheses to be evaluated 
using empirical data. By constraining parameters, we can focus on the 
hypothesis and not simply a change in probabilities. Considering in-
ference across data analysis units (multiple y values pertaining to dif-
ferent study areas or sampling periods) or studies allows an accurate 
interpretation of diel niche switching. Second, for a given hypothesis, 
model parameters will be more precise because of the constraints. 
Thus, even with small sample sizes, parameter estimates will be more 
precise compared to a model with unconstrained parameters. Lastly, 
we do not need to ignore the unconstrained model and can actually 
incorporate it into our hypotheses sets in the Diel.Niche package 
(see Section 6).

For researchers who take an alternative procedure to model diel 
activity, we encourage them to consider post hoc classification of 
their inference using the diel phenotypes defined here. If results 
can be summarized into the three probabilities (ptw, pd, pn), then this 
framework could be of use (see Section 4). Specifically, it may help 
differentiate between changes in activity within a diel phenotype 
and the switching to a new diel phenotype (e.g. nocturnal  → diurnal).

4  |  WORKED E X AMPLES

The fundamental data analysis unit (y) should be considered as a set 
of observations of a species of interest that was continuously sam-
pled throughout the 24- h period in a place and time of interest. In the 
following, we consider five worked examples with varying goals that 
demonstrate the use of the Diel.Niche package. The first three ex-
amples are based on camera trap data collected at 131 spatial locations 
deployed through urban greenspace in Chicago (Illinois, USA) to better 
understand the spatio- temporal dynamics of urban mammals (Magle 
et al., 2019). The fourth example highlights the issue of visually trans-
lating results from circular kernel density analyses into diel phenotypes 
and how using the Diel.Niche package can overcome this issue. 
Lastly, the fifth example demonstrates how the Diel.Niche package 
can be used to complement an animal movement analysis using telem-
etry data. Vignette's describing the full set of code and results for each 
worked example can be found on GitHub and as part of the package.

4.1  |  Single data unit analysis

Here, we are interested in classifying the traditional diel niche of 
the Virginia opossum (Didelphis virginiana) in an urban environment 
during the winter of 2018–2019. Specifically, sampling occurred for 
a total of 27 days from 29th December to 24th January. These data 
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    |  9GERBER et al.

are available in the package using the ‘diel.data’ object. After remov-
ing sequential photos at the same site within a 15- min period, we 
aggregated these observations across all camera locations, such that 
y = [ 5 20 30].

Using the ‘diel.fit’ function to estimate model probabilities as-
suming equal weights on each model,

out <- diel.fit(  
y = as.matrix(y),  
hyp.set = hyp.sets(Traditional),  
post.fit=TRUE,  
n.chains=3,  
n.mcmc=5000,  
burnin=1000  
 )

We find that the cathemeral hypothesis is supported with a pos-
terior model probability of 1.0. Using base R plotting and the ‘triplot’ 
function as triplot(out), we can visualize the posterior distributions 
of the activity probabilities (Figure 4).

We see the opossum is most active at night in the winter, but also 
has a relatively high amount of activity during the daytime. The 3D 
figure allows us to consider where in the Traditional hypothesis set, 
these probabilities fall. Given the low amount of activity at twilight, 
we find using the General hypothesis set that the diurnal–nocturnal 
hypothesis would be a more accurate description of the opossum's 
winter diel niche.

4.2  |  Multiple species with one data analysis unit

Commonly with passive sampling techniques, such as camera traps, 
the focus of a study is on a community rather than a single species. 

Here, our objective is to evaluate the diel niche of a community of 
urban mammals in the winter by considering support for hypotheses 
from the General hypothesis set. Again, we use the ‘diel.data’ object 
to obtain the aggregated data from cameras deployed in Chicago 
(Illinois, USA) for 25 days between 25 January 2018 and 20 February 
2019. We estimated and compared the diel niche of each observed 
species following the same procedure as in the first example.

A total of seven native terrestrial mammal species were observed 
with total species detections ranging from 25 to 284 (Table 2). We 
found a high- level of evidence (model probability >0.9) that white- 
tailed deer (Odocoileus virginianus) are diurnal–nocturnal, northern 
raccoon (Procyon lotor) and eastern cottontail (Sylvilagus floridanus) 
are nocturnal and the grey squirrel (Sciurus carolinensis) and fox 
squirrel (Sciurus niger) are diurnal. We are moderately confident 
(model probability near 0.75) that coyote (Canis latrans) and Virginia 
opossum (Didelphis virginiana) are diurnal–nocturnal. Comparing 
these results to the literature (Cox et al., 2021), we see agreement 
with only the northern raccoon and both squirrel species. There is 
disagreement with all other species, where the literature consid-
ered the diel niche of the Virginia opossum to be nocturnal, and the 
white- tailed deer and the eastern cottontail to be crepuscular. The 
coyote diel niche difference is more subtle, where they are consid-
ered as cathemeral in the literature, we estimated their activity to be 
a specific form of cathemerality (i.e. diurnal–nocturnal).

Using the most supported model by species, we plotted the esti-
mated probability of diel activity for the three diel periods (Figure 5). 
Interestingly, the coyote is active in all three diel periods, but is most 
active during the night, which is also when their prey species, the 
eastern cottontail, is active. White- tailed deer were found to be 
most active during the daytime, which is surprising given that they 
are not avoiding periods of high human activity in an urban envi-
ronment. We also found that the eastern cottontail has the most 
amount of activity during the twilight from this mammal community.

F I G U R E  4  Posterior distributions of the probability of activity (left) and the same in three- dimensional form (right) overlaying the 
traditional hypothesis set for the Virginia opossum sampled in Chicago, IL, United States, in the winter of 2018.
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10  |    GERBER et al.

4.3  |  One or more species with multiple data units

Our framework has outlined a process for making inference on the 
diel niche of species for a given spatial area and sampling period. A 
natural question is how to link hypotheses about how the diel niche 
of a species may change over time or over space. Simply, how do we 
link spatial or temporal covariates to findings of diel niche classifica-
tion? Ideally, a fully hierarchical model that synthetically connects 
the diel niche classification to covariates would be specified, such 
that parameter estimation is done jointly and all parametric uncer-
tainties are fully recognized. However, the constrained optimization 
of the multinomial model makes this challenging at this time.

We offer a two- staged modelling process that accomplishes the 
goal. First, estimate the diel niche for a species at each spatial or 
temporal period of interest to identify the most supported hypothe-
sis. Second, use the hypotheses as data in a subsequent categorical 
regression model that links the hypotheses to covariates of interest. 
It should be understood that if there is uncertainty in the most sup-
ported model, then this does not get acknowledged in the regres-
sion model. To remediate this concern, researchers may want to only 
consider using hypotheses with a given high level of probability of 
support (e.g. model probability ≥ 0.80) or propagate this uncertainty 
into the subsequent analysis.

As one example, Virginia opossum are a predominately nocturnal 
species that become more active during the day in the winter in tem-
perate environments (Gallo et al., 2022). As a result, we might expect 
this species to switch between diel phenotypes over the course of 
a year. As the previous Chicago data are from a long- term biodiver-
sity monitoring survey, we compiled 27 different sampling periods, 
each of which represented roughly 28 days of sampling across 131 
sites in Chicago, Illinois. To capture seasonal variation, cameras were 
deployed in January, April, July and October, and data come from be-
tween 2013 and 2019 (all of which is available in the ‘diel.data’ object).

We fitted a Traditional hypothesis set to each analysis unit with 
equal prior weights on each model, and retained each analysis unit 
that had a probability of model support ≥ 0.80. This resulted in a total 
of 23 analysis units. We then fitted a categorical regression model to 
these data. More specifically, we let mi be a numeric representation 
of the diel phenotype for the ith analysis unit, such that 1 = cathem-
eral, 2 = diurnal and 3 = nocturnal. While there is the possibility of 
there being four diel categories, in this specific case opossum were 
either classified as nocturnal or cathemeral. As a result, we dropped 
out the crepuscular category, but retained the diurnal category to 
demonstrate the use of this model across more than two diel phe-
notypes. Furthermore, let p be a vector of probabilities that sum to 
1 and represent the probability a given diel phenotype is used. The 
most basic model without covariates is then

TA B L E  2  Detection frequencies of urban mammals in Chicago, Illinois, United States, during the winter of 2019 and posterior model 
probabilities of support from the General hypothesis set. Crep, Crepuscular; Diur, Diurnal; Noct, Nocturnal.

Species Twilight Day Night Diurnal Nocturnal Crepuscular Cathemeral Diur- Crep Diur- Noct Crep- Noct

Coyote 3 8 23 0.00 0.07 0.00 0.17 0.00 0.75 0.00

Virginia opossum 0 7 18 0.00 0.21 0.00 0.02 0.00 0.77 0.00

White- tailed deer 4 39 20 0.00 0.00 0.00 0.07 0.00 0.93 0.00

Northern raccoon 6 8 133 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Eastern grey squirrel 0 284 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Eastern fox squirrel 0 49 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Eastern Cottontail 13 5 123 0.00 0.99 0.00 0.00 0.00 0.00 0.01

F I G U R E  5  Results from worked examples 2 (left), 3 (middle) and 4 (right). Left: the posterior median (circles) and 95% credible intervals 
of the probability of activity for the Chicago, IL mammal community in the winter of 2019; parameters are from the most supported model 
for each species using the General hypothesis set. Middle: the posterior predicted probability of the nocturnal hypothesis for the Virginia 
opossum in Chicago, IL, United States. Right: an example circular kernel density plot. The shaded area indicates periods of twilight and the x- 
axis tick marks represent each observation. Using the hypothesis sets of Maximizing, Traditional and General leads to classifying this activity 
pattern as diurnal max, cathemeral traditional and diurnal–nocturnal respectively.
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    |  11GERBER et al.

To expand the model, we connect p with a vector of covariates that 
varies across sampling units by using the softmax function, treating 
cathemeral as the reference category. For this analysis, we consider 
whether the time of year affects the opossums diel niche. Specifically, 
we used the average ordinal date of an analysis unit as well as the 
square of that ordinal date (to allow for a non- linear relationship) as 
covariates, such that

where aD and aN are a vector of conformable regression coefficients for 
diurnal and nocturnal categories while xi is a vector of covariates with 
the first element being a 1 for the intercept. Weakly informative priors 
were used for all regression coefficients as Normal ( 0, 2 ) .

We fitted this model in v0.12.2 of Nimble (de Valpine et al., 2017) 
and used slice samplers for all parameters. Following a 10,000 step 
burn- in, we sampled parameter posterior distributions for a total of 
80,000 iterations across four chains. Overall, we found evidence  
that the probability Virginia opossum were nocturnal greatly de-
creased at the start and end of the year, when it is coldest in Chicago 
(Figure 5). This pattern was largely determined by the squared 
ordinal day term, which was strongly negative (aN

3
 = −1.36, 95% 

CI = −2.61, −0.27). This switch in diel phenotypes was quite dramatic, 
with the probability of nocturnality ranging from a high of 0.98 (95% 
CI = 0.86, 1.00) on 6th June to a low of 0.30 (95% CI = 0.01, 0.96) on 
31st December.

4.4  |  Diel classification with a circular kernel 
density analysis

A common statistical approach used in the diel ecology literature is 
that of the non- parametric circular kernel density estimators (Ridout 
& Linkie, 2009; Figure 5). Researchers can complement this analysis 
type by using the Diel.Niche package to define their findings in 
terms of diel phenotypes. After using the overlap R package's ‘den-
sityPlot’ function to fit the kernel density estimator, the outputted 
object (kernel.out) can be passed to the Diel.Niche function ‘prob.
overlap’ to integrate under the curve at the intervals along the x- axis 
that correspond to the diel periods (twilight, daytime, night- time) to 
estimate these probabilities as,

probs <- prob.overlap( 
kernel.out, dawn = c(6,7), dusk = c(17,18)  
 )

The other input required are the numeric values defining the 
beginning and end periods of dawn and dusk. Using example data 
from Figure 5, the probabilities of twilight, daytime and night- time 
were estimated as 0.055, 0.748 and 0.194 respectively. From here, 
the probabilities can be passed to the function ‘posthoc.niche’ that 
will match the diel phenotype within a hypothesis set that includes 
these probabilities as,

posthoc.niche (probs, hyp = hyp.sets (‘Traditional’)).

Using the Traditional hypothesis set, the results depicted in 
Figure 5 would be defined as the cathemeral traditional hypothesis. 
This may be unintuitive simply by looking at the plot. While there is a 
large amount of activity during the daytime, the probability of night- 
time use is also quite high at a probability of 0.194, thus supporting 
the cathemeral designation. If we use the Maximizing hypothesis set, 
we find that the diurnal max hypothesis is most supported, while 
using the General hypothesis set, the most supported hypothesis is 
more specifically the diurnal–nocturnal hypothesis.

By defining the diel hypotheses a priori and explicitly, we can 
more accurately make inference based on a given objective. Visually, 
the kernel density plot shows this animal is most active during the 
daytime, which is confirmed with the diurnal max hypothesis being 
most supported in the Maximizing hypothesis set. However, consid-
ering more traditional definitions of diel activity, we should define 
this animal as cathemeral, given its support under the cathemeral 
traditional hypothesis. More so, if we want to make a clear delin-
eation between activity at two diel periods (bimodal) vs three diel 
periods (trimodel), the General hypothesis set makes it evident the 
species is mostly active during only two diel periods, as supported 
by the diurnal–nocturnal hypothesis.

4.5  |  State- dependent movement with diel activity

Animal movement ecology and modelling are rich fields of study 
with much variation and complexity (Hooten et al., 2017). We 
offer one approach of how to complement a movement modelling 
analysis using the Diel.Niche package. Specifically, we modified 
an example of fitting a hidden Markov model in the momentuHMM 
package (McClintock & Michelot, 2018) to continuous telemetry 
data on an African elephant (Loxodonta africana) available from Wall 
et al. (2014). We considered two movement states (encamped and 
exploratory) and allowed model parameters to be constant or to 
vary by daily cycles caused by temperature variation. Using the most 
supported movement model, we predicted the movement state at 
each hourly location between March 2008 and September 2010 
(Figure 6).

We found step lengths to vary by movement states on average 
(encamped: 186 m ± 5.4, exploratory: 866 m ± 29.3) and vary cyclically 
depending on the time of day (Figure 6). We predicted that the diel 
phenotype of this individual would vary between movement states 
and change throughout the year. We evaluated this by summarizing the 
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12  |    GERBER et al.

number of observations at each hourly location into the three diel peri-
ods by sampling month and movement state. For each month and state, 
we estimated the most supported phenotype from the General hypoth-
esis set and predicted the probability of activity in each diel period.

When this individual elephant was in the encamped movement 
state, roughly 60% of the time they used the diurnal–nocturnal 
phenotype (n = 18) while 40% of the type they used the general 
cathemeral phenotype (n = 13). Conversely, when the elephant was 
exploratory, they were almost always classified as diurnal–nocturnal 
(25 of 28 samples). The difference between phenotypes was only a 
small increase in activity during twilight (Figure 6). Largely, this in-
dividual was almost always moving, regardless of state behaviour, 
during the daytime and night- time.

5  |  C AVE ATS

Our goal was to focus on defining, estimating and modelling hy-
potheses of diel phenotypes motivated by the animal ecology and 

evolution literature. It is important to recognize the probability of 
activity in the three diel periods is a simplification of a complex 
process (e.g. see kernel density plots in Figure 1; Gaston, 2019; 
Gilbert et al., 2022). More detailed inference, how animals use time 
from minute to minute or hour to hour are warranted and needed. 
However, we hope that researchers will consider how they trans-
late their findings into standardized diel language and hope that the 
Diel.Niche package will be of use in doing so.

The Maximizing, Traditional and General hypothesis sets focus on 
characterizing an animal's diel phenotype based on the amount of 
activity or use in a diel period. Since the focus is on use within the 
context of the study design and sampling period, these hypothesis 
sets do not account for the amount of available time in each diel 
period. We defined diurnal, nocturnal and crepuscular phenotypes 
with the same thresholds to make fair comparisons. This has espe-
cially important implications for identifying an animal as crepuscu-
lar in these hypotheses sets. We contend that terrestrial vertebrate 
species may have been poorly defined as crepuscular in the litera-
ture due to a lack of clear distinction between use and selection, lack 

F I G U R E  6  Results from worked example 5 on Africa elephant movement and diel activity: The top row is the predicted mean step length 
in the encamped movement step over the diel period and the predicted state (encamped or exploratory) for the entire track. The bottom row 
is the predicted diel activity by movement state and diel period.
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of standardized definitions of phenotypes (e.g. non- equivalence of 
thresholds in regard to use) and non- standardized sampling through-
out the entire diel period.

Given our definition for the twilight period, there will only ever 
be a small amount of time available for the animal (e.g. <0.10), such 
that it may be unusual to find an animal using the twilight with a 
probability of 0.80 or greater (the lower constraint for defining 
crepuscular in the Traditional and General hypothesis sets). One 
option would be to modify our definitions of twilight and increase 
the amount of time defined as twilight when classifying observa-
tions. Rather than strictly defining twilight around sunlight times, 
which leaves only a small portion of the day available for a spe-
cies to be crepuscular, some studies have added a buffer period 
(30 min or 60 min) around dusk/dawn (Farris et al., 2015; Haysom 
et al., 2023). This change assumes that astronomical twilight does 
not represent biological twilight to a species, which seems intui-
tive, but does introduce subjectivity as one must decide how much 
to widen the twilight period. Defining twilight is an open question, 
but regardless, how and why it is defined should be clear in future 
diel studies.

Furthermore, if there are other logical definitions that lead to 
unequal constraints being used to define diurnal, nocturnal and cre-
puscular, then researchers can implement them in the Diel.Niche. 
However, each is defined, this should be explained and documented 
when reporting results.

It is also important to consider extremes in the amount of time 
available in each diel period, which can occur with data collected 
during the summer and winter months further from the equator. As 
such, there may be times of year where certain diel periods are not 
available to a species, and care should be taken when classifying 
a species diel phenotype when this occurs. This is partly why we 
constructed the Selection hypothesis set, as it could compliment the 
other hypothesis sets during diel ‘extremes’.

Finally, our framework currently does not differentiate between 
morning and evening twilight. This may be warranted for certain 
species and ecosystems or times of the year. Notably, ectotherms, 
such as insects or amphibians, may be more likely to be active during 
evening twilight when temperatures are warmer relative to morning 
twilight, which is often the coldest portion of the diel cycle. Predators 
may also be more active during morning or evening twilight depend-
ing on the vulnerability of their prey species. Our current framework 
is built around constraints of only three diel periods. However, this 
could be expanded to any number of diel periods defined by the user 
in future developments.

6  |  ADDITIONAL RESOURCES

The main vignette for the package Diel.Niche is provided on the 
GitHub repository demonstrating key functions. This includes simu-
lating data under a hypothesis, model fitting and estimation, plotting 
and example data. This vignette can also be accessed in the package 
(assuming vignettes have been built during package installation) as 

vignette (‘Diel- Niche- Vignette’). A secondary vignette (‘Diel- Niche- 
Additional’) is also available that describes additional hypotheses 
(defined and described in Supporting Information S2), as well as how 
a user may change default values (e.g. �1 and �2) and even specify 
novel hypotheses. Furthermore, each worked example is provided 
as a vignette in the package or on Github, as well as a sixth worked 
example demonstrating how to make inference from the Selection 
hypothesis set.

Users who prefer a graphical interface can use Diel.Niche 
through the R Shiny web application (https:// shiny. celsrs. uri. edu/ 
bgerb er/ DielN iche/ ). The current implementation allows users to 
specify a single data analysis unit ( y ) and to choose among the four 
hypotheses sets. The application will automatically generate a table 
of model probabilities and posterior quantities of model parameters. 
Both 2D and 3D plots of model parameters are generated and can 
be downloaded.

7  |  CONCLUSION

Studies of animal diel ecology and evolution provide inference to 
how animal activity is shaped within the 24- h light–dark cycle. This 
leads to a more complete understanding of an animal's niche (Cox 
et al., 2021), as well as having implications for how to conserve wild 
animal populations (Cox et al., 2023; Rivera et al., 2022). As non- 
invasive sampling and animal- borne sensors continue to evolve and 
make it easier to continuously collect data on wild animals through-
out the diel cycle, we expect increasing studies focused on how ani-
mals use diel time.

We offer the Diel.Niche R package as a framework to 
quantitatively define and thus standardize diel ecology language 
regarding diel phenotypes. We hope this will lead to more accu-
rate comparisons across studies and reduce potential confound-
ing from qualitative and visual interpretations of diel phenotypes. 
We offer several complete diel phenotype hypotheses sets that 
aim to accomplish different study objectives. The Diel.Niche 
package can be used to compare models, estimate parameters and 
visualize results, or be used to complement other analyses by de-
fining their inference into standardized terminology. We suggest 
researchers report their results following similar text as—‘Using 
the <insert name> hypothesis set, we found that <species name> 
were <diel phenotype> (p = <insert model probability>), spending 
x (95% CI = low, hi) amount of time active during the night, y (95% 
CI = low, hi) amount during the day and z (95% CI = low, hi) amount 
during twilight’. Ultimately, we hope our framework and R package 
will assist resource managers and researchers to more clearly and 
effectively define and differentiate how animals use diel time to 
improve conservation approaches.
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