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1 | INTRODUCTION

The rise and setting of the sun causes shifts in environmental con-
ditions (e.g. temperature, humidity) and ecosystem processes (e.g.
pollination, dispersal) that affects nearly all species on Earth (Cox &
Gaston, 2023a; Gaston, 2019; Gaston et al., 2023). Animal groups,
including insects, amphibians, birds, fish, molluscs and mammals,
are well known to be influenced by the changes associated with
the light-dark cycle (Anderson & Wiens, 2017; Flury & Levri, 1999;
Hut et al., 2012; Kronfeld-Schor & Dayan, 2003; Saunders, 2012).
An animal's diel activity has long been considered a component
of an animal's niche (Carothers & Jaksi¢, 1984; Hutchinson, 1957;
Kronfeld-Schor & Dayan, 2003; Levy et al., 2019; Pianka, 1973;
Wiens et al., 2010). Yet, research on how animals use time within the
diel period (24-h light-dark cycle) has until recently been an under-
appreciated focus of study (Anderson & Wiens, 2017; Carothers &
Jaksi¢, 1984; Gaston, 2019; Kronfeld-Schor & Dayan, 2003; Wiens
etal., 2010).

Among mammals, a species' diel activity or main time of day
at which individuals display locomotor activity (Hut et al., 2012)
has been viewed as a fixed behavioural trait (Levy et al., 2019)
constrained by evolution, morphology and physiology (Anderson
& Wiens, 2017; Hall et al., 2012). Major shifts in a species' diel
niche (e.g. nocturnal — diurnal) have been predicted from ecologi-
cal theory (Schoener, 1974a, 1974b) and observed (Kronfeld-Schor
& Dayan, 2003) to be rare. Partly for these reasons, mammals
are often attributed a single diel niche (e.g. diurnal; Mittermeier
& Wilson, 2009; Nowak & Walker, 1999). Such a categorization
makes the implicit assumption that all individuals—across popula-
tions and regardless of environmental conditions—would maintain
this diel niche to optimize fitness (e.g. via foraging, predation risk
and reproduction) based on their morphological and physiological
traits.

However, recent studies have shown flexibility in mammals' cir-
cadian regulation of their physiology (Riede et al., 2017; van der Veen
et al., 2017) which allows for more adaptability in diel activity than
previously thought (Gaston, 2019; Rivera et al., 2022). Furthermore,
there is growing empirical evidence that many mammal species alter
their diel activity in response to environmental context (abiotic and
biotic), including temperature (Gallo et al., 2022; Hut et al., 2012),
season (Farris et al.,, 2015; Hut et al., 2012), anthropogenic activ-
ity (Gaynor et al., 2018; Moll et al., 2018), landscape features (Gallo
et al., 2022; Rivera et al., 2022) and intra- and inter-specific compe-
tition (Cunningham et al., 2019). Translating whether these changes
in activity can be characterized as a shift in an animal's diel niche
(e.g. nocturnal - diurnal) depends on how we define the possible
phenotypes.

The traditional diel phenotypes for tetrapods are diurnal, noctur-
nal and crepuscular (Anderson & Wiens, 2017). A speciesis commonly
described as such based on the majority of their activity occurring
in a single distinct period of light availability (daytime, night-time or
dawn dusk respectively). Less often considered, but an important
complementing diel phenotype, is cathemerality (‘through the day’;

Cox & Gaston, 2023b; Cox et al., 2023), which is an even amount of
activity across the entire diel period, or a large amount of activity
across multiple time periods (e.g. day and night; Tattersall, 2008).
For many studies, there is little consideration for what constitutes a
species being assigned one of these diel phenotypes.

Commonly, researchers plot activity curves and assign a spe-
cies a diel phenotype based on visual interpretation (e.g. Ridout
& Linkie, 2009). Studies that consider how species change their
probability of activity through the day (Gallo et al., 2022; Gaynor
et al., 2018) often do not assess switching among theoretically moti-
vated diel phenotypes (e.g. diurnal, nocturnal etc.; Hut et al., 2012).
We see three issues with these approaches. Foremost, without
explicit definitions, we cannot propose hypotheses about diel phe-
notypes that are directly evaluated with empirical observations.
Second, the lack of explicit quantitative definitions of diel pheno-
types means that comparisons across studies may be inappropriate,
because researchers may be operating under different definitions.
This clearly complicates the evaluation of diel niche switching across
studies. Third, qualitative interpretations of diel phenotypes are
without measures of uncertainty describing how confident we are
that a species is using a given diel phenotype. Our work aims to over-
come these three concerns.

Research on the diel activity of wild animals is becoming in-
creasingly prevalent (Supporting Information S1, Figure S1). This is
partly due to the growing use of camera traps (Gilbert et al., 2022),
which can continuously sample the spatio-temporal activity of
small to large non-volant animals throughout the 24-h period (Frey
et al., 2017). Recently, several thoughtful conceptual frameworks
have proposed multiple lines of inquiry focused on diel niche hy-
potheses (Gaston, 2019; Gilbert et al., 2022). To help move animal
diel research in the direction of advancing our understanding related
to these conceptual frameworks, we need to connect diel terminol-
ogy in ecology and evolution with hypotheses that can be tested
using empirical data.

We propose a quantitative framework for defining diel pheno-
types and probabilistic models that can be evaluated with empir-
ical data and provide a measure of model hypothesis uncertainty.
Importantly, we propose a framework that is appropriate even at
relatively small sample sizes. This is critical for being able to evaluate
the diel niche of rare and difficult to detect species. Furthermore,
we offer multiple hypotheses sets that accomplish alternative
objectives.

We implement our framework in the new Diel.Niche R pack-
age (R Core Team, 2023) available on Github at https://github.com/
diel-project/Diel-Niche-Modeling. The fundamental elements of
the package are (1) defining diel phenotypes, (2) model comparison
among diel hypotheses using Bayes factors and (3) estimating prob-
abilities of twilight (dawn and dusk), daytime (daylight hours) and
night-time (night hours) activity. Users may use all three elements,
or choose to estimate probabilities outside of this framework and
only use the package to define their results according to preset
diel phenotypes. Furthermore, users can modify existing hypothe-
ses and also define completely new hypotheses. For non-R users,
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a visual online Shiny application is available for simple analyses
(https://shiny.celsrs.uri.edu/bgerber/DielNiche/). We hope this
work will encourage consistency in definitions for appropriate com-

parisons across studies.

2 | EXPLANATION OF THE METHOD
2.1 | Defining diel phenotypes

We define diel phenotypes based on the activity probabilities of the
three fundamental light availability periods: twilight (tw), daytime (d)
and night-time (n). We refer to these time periods as ‘diel periods’
throughout. The sample data are thus a vector of observed inde-
pendent detection frequencies in each period, as y = [th Y yn]
respectively. These frequencies depend on the respective probabili-
ties of py,, bgand p,.

We translate each diel phenotype as a probabilistic multinomial
model with linear inequality constraints on the probabilities (Heck
& Davis-Stober, 2019) following the implied relationship under the
given phenotype. The inequalities specify which probability com-
binations for the diel period are defined as a certain phenotype.
Specifically, we define inequality constraints by matrix A and vector
b, such that A@ < b, where 8 = [p,, Py The sum of the three proba-
bilities is always one, such that there are two free model parameters,
where p,, is derived as 1 — p,,, — pg-

As an example of how constraints are used within this modelling
framework, let us define a phenotype where we are interested in
whether an animal is primarily diurnal, such that the majority of its
activity occurs during the daytime. This phenotype is general with-
out any specific constraints on how much activity occurs during the
twilight or night-time. Simply, the probability of activity in the day-
time is greater than the activity probability during twilight or night-
time. We can define this phenotype as a set of two inequalities,

Prw < Pd» (13)

pn < Pg- (1b)

To translate these into the above inequality setup, we redefine
Equation (1a) as,

ptw S pd
Piw —Pg < 0, such that 2)
(D)X Py +(=1)xpg <0,

and, given that p, = 1 —p,,, — pq according to our earlier definition,
Equation (1b) is,
Pn < Pg
1-py —Pa < Py
1—pp—Pa—Pa<0 9
(=D Xppy+(—2)Xpg < - 1.
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The constants within the parentheses on the left of the inequal-
ity sign are packaged into matrix A and the constants on the right are

packaged into vector b, such that

1 -1 0
A= b= . (@)
-1 -2 -1

Altogether, the full inequality phenotype statement is,

AO<b
(D)X pp +(—1)Xpy < 0
(=D Xpry+(=2)Xpy -1 (5)
Ptw —Pd 0
—=Prw = 2Pg | -1

We use the same procedure to specify a number of phenotypes
that together represent four complete hypothesis sets with mutu-
ally exclusive diel phenotype hypotheses: Maximizing, Traditional,
General and Selection (Figures 1 and 2). The first three hypothesis
sets are strictly on how much an animal uses each diel period, while
the fourth (Selection) is based on the selection of a diel period, where
the probability of use is greater than the proportional amount of time
available in a diel period (Gallo et al., 2022; Northrup et al., 2022).
The file Supporting Information S2 describes and mathematically

defines the set of inequalities for each phenotype.

2.2 | Diel hypothesis sets

We propose three hypothesis sets aimed at characterizing the
probability of activity or use in the three diel periods (Maximizing,
Traditional, General; Table 1). To discriminate among the hypotheses
of diurnal, nocturnal and crepuscular in regard to how much activity
is distributed among their respective diel periods, we believe it is
logical to define the hypotheses with equivalent thresholds or con-
straints. This equivalence means that the hypotheses are standard-
ized in regard to how much activity is required in the respective diel
periods to be called diurnal, nocturnal or crepuscular. Since the focus
is on estimating the amount of activity, these hypotheses sets do not
account for the different available amount of time in the three peri-
ods. We are estimating the use of the three diel periods within the
context of the study design and sampling period. This has important
consequences, especially for being defined as crepuscular as the twi-
light period is relatively short, which we discuss in the Caveats sec-
tion. To move beyond use and to quantify use relative to availability,
we also propose a fourth hypothesis set (Selection) that accounts for
the available amount of time in the diel periods to evaluate selection
(i.e. disproportional use, given availability; Table 1).

The Maximizing hypothesis set includes three diel phenotype
hypotheses (Figure 1; Crepuscular Max, Diurnal Max and Nocturnal
Max) with the objective of evaluating which diel period is used most.
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The middle plot depicts the probability that the generating model is most supported by parameter combinations when the sample size is 100
total observations. The right plot comprises results of the probability the generating model was most supported across varying sample sizes.
Complementary simulation results are found in Supporting Information S1, Figure S4.

As such, there is no hypothesis about activity across multiple diel
periods (i.e. cathemeral). The Traditional hypothesis set includes four
diel phenotype hypotheses (Figure 1; crepuscular, diurnal, nocturnal,
traditional cathemeral) that aim to capture the general interpreta-
tion of these hypotheses from the literature. Crepuscular, diurnal
and nocturnal are defined based on having at least 0.80 probability

(threshold probability, £; = 0.80) in their respective diel periods. If an
animal is not mostly active in one period than it is defined as tradi-
tional cathemeral; this occurs when either two or three diel periods
are used more than 1 — &,. The logic behind the threshold of 0.80 is
that an animal is predominately active in one diel period, but is not
so strict that there can be some moderate amount of activity outside
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TABLE 1 Hypothesis sets and their

objectives. Hypothesis set

Maximizing

Traditional

General

Selection

Journal of Animal Ecology E EEH%TEEJ"“

Evaluate which diel period (daytime, night-time, twilight) is used the most.
No consideration of bimodal or trimodal phenotypes, or the available
time in each diel period

Objective

Evaluate the support of standard diel phenotypes in the literature based
on use of each diel period. No consideration of bimodal phenotypes or
consideration of available time in each diel period

Evaluate support of the standard diel phenotypes based on use of each diel
period with separation between bimodal and trimodal phenotypes. No
consideration of available time in each diel period

Evaluate the disproportional use or selection of diel periods by
incorporating the available time in each diel period while considering
bimodal phenotypes

of this period. While £, = 0.80 is the default value in Diel.Niche,
it can easily be modified by a user when fitting these hypotheses to
their data.

The General hypothesis set includes seven diel phenotype hy-
potheses (Figure 1). The diurnal, crepuscular and nocturnal hypoth-
eses are defined the same as in Traditional. The main difference is
the separation of the probability space of traditional cathemeral into
four more specific hypotheses: general cathemeral, crepuscular-
nocturnal, diurnal-nocturnal and diurnal-crepuscular. The general
cathemeral hypothesis—which represents a subset of the parameter
space taken by the previously mentioned traditional cathemeral—
aims to define when an animal uses all three diel periods at equal to
or more than a minimum amount (i.e. &, < Py, Pgs Pn < &7). We de-
fined the lower threshold probability as &, = 0.10, such that we con-
sider it important to differentiate animal activity when a diel period
is used at least this much (Figure 1). However, if only two diel peri-
ods are used above &,, then we classify this activity using one of the
binomial hypotheses (crepuscular-nocturnal, diurnal-nocturnal and
diurnal-crepuscular). For example, suppose a species is active mainly
during the day (p; = 0.78), but is also relatively active during twilight
(P = 0.16), and not very active at night (p, = 0.06). We would de-
fine this activity as diurnal-crepuscular because py,,, py > &5, While
p, < &. However, if night activity was also higher than &,, such that
py =0.70 and p,,,, p, = 0.15 then we classify this activity as general
cathemeral because a moderate to large amount of activity is occur-
ringinallthree diel periods. In summary, the Traditional hypothesis set
distinguishes between unimodal and multimodal diel activity, while
the General set distinguishes among unimodal, bimodal and trimodal
activity. The General hypothesis provides a more clear definition of
cathemerality compared to the original description (Tattersall, 2008)
by separating bimodal and trimodal activity periods.

The Selection hypothesis set includes seven diel phenotype hy-
potheses (Figure 2; day, day-night, day-twilight, equal, night, night-
twilight and twilight selection). Each are defined based on an
inputted (i.e. not estimated) amount of proportional time available to
an animal in each diel period (p,yaii = [ Paviws Pavdl the available time
in the night period is derived as, 1 — p,, v — Pavd)- AS such, the com-
bination of parameter values defined as a certain phenotype and the
parameter space area of each phenotype will change based on p,.;.

The values of p,,,; will depend on the day of the year and location of
sampling. Each phenotype is defined based on a single diel period or
multiple diel periods being used greater than available. For example,
diurnal selection occurs when p’:ﬁ > 1and p’::ﬁ , p% < 1. The equal se-
lection hypothesis is different in that it tests the equality among the
probabilities and p,,,i-

We offer these definitions as a means to standardize the diel ac-
tivity hypothesis language. Each hypothesis set is preset and avail-
able for use in Diel.Niche. The function ‘hyp.sets’ can be used to
list the code names for each hypothesis and can be used to pass to
the ‘triplot’ function to provide a 3D plot of the parameter space

(Figure 1; first column) as,

hyps <- hyp.sets(‘General’)
triplot(hyp=hyps)

This is known as a ternary plot that describes three variables that
sum to a constant value and has been long used to characterize soil
ratios (Shepard, 1954). The package also allows the specification of
new hypotheses (see ‘Section 6’). Researchers interested in changing
the probability threshold values (£ and &) or defining novel hypoth-
eses should report these in their research.

2.3 | Modelling and estimation

Applying inequality constraints on the parameters of multinomial
models is a well-known modelling and estimation issue in statistics
(Silvapulle & Sen, 2011). Implementing these models is often chal-
lenging in general purpose software. We used a Bayesian approach
and take advantage of a general Gibbs Markov-Chain Monte Carlo
(MCMC) sampler developed and implemented in the R package
multinomineq (Heck & Davis-Stober, 2019). The sampler is highly
efficient and implemented in C++, making the MCMC sampler rela-
tively fast compared to general purpose software implementations.
Generalized model specification and the likelihood function are fully
detailed in Heck and Davis-Stober (2019). The core modelling and es-
timation in the Diel.Niche package are done using wrapper func-
tions that implement more general functions of the multinomineq
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package. In terms of model parameter (9) prior specification, prob-
abilities are given a Dirichlet prior distribution with a truncated
support that is defined by the constrained parameter space (Heck
& Davis-Stober, 2019). The default hyperparameters used in Diel.
Niche for the prior are shape parameters of 1 for each free model
parameter. This is equivalent to a multiparameter uniform prior for
each parameter, which is thus a very uninformative prior.

Model comparison is done via Bayes factors (Berger, 2013) for
models with inequality constraints (Klugkist & Hoijtink, 2007), which
implicitly provides a trade-off between model fit and complexity.
Each model within a hypothesis set requires a prior to compute pos-
terior model probabilities from the Bayes factors. Diel .Niche uses
a default of equal weight among the set, but this can be changed.
For example, if the literature attributes a species as nocturnal, a re-
searcher may want to increase the prior of the nocturnal hypothesis.

The prior will therefore depend on the goal of the study.

3 | THINGS TO CONSIDER BEFORE USING
THIS METHOD

3.1 | Thedata

The study of diel activity describes when behavioural actions occur
within the 24-h light-dark cycle. However, capturing all animal be-
haviours is generally impossible without direct and continuous
behavioural sampling. This is often not possible for many species
that cannot be followed to record behavioural observations with-
out changes in animal behaviour occurring due to human presence.
Even when individual animals can be followed, tracking continuously
over many 24-h periods is logistically infeasible. Here, we focus on
the traditional definition of diel activity in terms of animal move-
ment (Hut et al., 2012) as it is a fundamental behaviour to ecosystem
functioning and species survival (Tucker et al., 2018). Increasingly,
high-frequency GPS telemetry is used to sample the location and
movement of many species. These data sets could be very useful
to estimate diel activity, especially as behavioural state modelling
may help separate when and where specific behaviours are occur-
ring (Michelot & Blackwell, 2019). This would allow diel activity to
be separated by movement and behaviour types, rather than move-
ment alone. Limitations of these data include the (1) expense in
tracking many individuals in a population to gain a population-level
inference, (2) difficulty in trapping many rare or small species, which
are not readily or legally able to be trapped and (3) morphology of
some species which poses challenges for external attachment (e.g.
neck collars) thereby necessitating possibly risky surgery for a trans-
mitter to be implanted.

The type of data that primarily motivated this work was species
detections from camera traps. However, any spatially fixed technol-
ogy that samples species activity throughout the 24-h period contin-
uously is applicable. This could include autonomous audio recording
units, where species can be identified and calling conveys an import-
ant activity. The fundamental data unit we are considering is a set

of detection frequencies (y). Considering common camera trap sam-
pling designs, where a set of n cameras are deployed at unique spa-
tial locations over a period of interest (e.g. a climatic season), y may
be an aggregation of detections across all cameras for this specified
period of time. Thus, inference is at the study area and sampling pe-
riod level. However, if enough data are available, inference could be
made either at the camera trap level or among a subset of cameras
within a study area (e.g. cameras placed in different habitat types).

We assume that dependencies in the data have been removed,
such as temporal autocorrelation among a species' detections at a
sampling location. Thus, frequencies of detections during twilight,
daytime and night-time are independent. For camera trap sampling,
it is common to have several to many sequential photographs of the
same individual at the same location. Commonly, correlation is re-
moved by subsetting data to exclude detections within a specified
period of time (e.g. 10, 15, 30 min; Farris et al., 2015). A more quan-
titative approach would be to test this correlation using lorelograms
(lannarilli et al., 2019).

Of fundamental importance is the classification of each inde-
pendent detection into the appropriate diel period. Fortunately, this
can be determined if you know the date, time and spatial location
of a given sample. This information can be used to calculate the
start and end of various sunlight phases (e.g. sunrise, sunset, dusk)
and are implemented in R with the suncalc package (Thieurmel &
Elmarhraoui, 2019). We suggest samples be assigned to the three

diel periods following astronomical definitions, as shown below.

e Twilight: The sample occurred during either dawn or dusk. Dawn is
the time between the start of morning astronomical twilight (i.e.
the sun is 18 below the horizon) and sunrise (i.e. the top of the sun
is at the horizon). Dusk is the time between sunset and the end
of evening astronomical twilight. These definitions represent the
entire twilight period, which separates day from night.

e Daytime: The sample occurred during the day, which is the time
between sunrise and sunset.

o Night-time: The sample occurred during the night, which is either
between midnight of that day and the start of morning astronom-
ical twilight or between the end of evening astronomical twilight

and midnight of the following day.

Using this classification scheme makes it possible to generate
a frequency table of detections that can then be used within the
Diel.Niche package.

3.2 | Hypothesis discrimination

Prior to implementing this framework, it is important to understand
how sample size affects the ability to discriminate among hypoth-
eses within a set. For each of our four hypothesis sets, we simulated
4000 data sets under each hypothesis within a set at a widae range
of total samples sizes (10, 20, 40, 80, 160, 320, 640, 1280; Zy,). We
fitted each data set and estimated the posterior model prc';linability
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of the hypothesis generating the data; each model was given equal Lastly, we explicitly demonstrate how the arrangement of hypoth-
prior weight. Since each hypothesis is mutually exclusive (i.e. non- eses' parameter space affects the ability to identify the hypothesis
overlapping defined parameter space), model uncertainty will be generating the data. To do so, we use the Selection hypothesis set to
highest when the true probability parameters are near the boundary simulate 200 data sets with a sample size of 100 for each combina-
of a hypotheses parameter space and adjacent to another hypoth- tion of parameter values (0) at increments of 0.05 and estimate the
eses parameter space. This will occur more often with hypotheses probability the generating hypothesis is most supported within the
with small parameter spaces (e.g. General hypotheses). We consid- set. We set p,,.,; = [0.04 0.48].

ered how this would alter model selection and certainty by only We found the ability to identify the generating model with the
simulating data such that hypotheses parameter spaces are sepa- most support (i.e. highest posterior model probability) to vary by

rated by at least 0.1 and 0.2 (Supporting Information S1, Figure S2). hypothesis set (Figures 2 and 3; Supporting Information S3 and S4).
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FIGURE 3 Simulation results of the probability the generating model was most supported across varying sample sizes and the extent of
separation in probability space between hypotheses within a hypothesis set. Increasing separation values indicate more difference in probability
values between hypotheses used to simulate data. Complementary simulation results are found in Supporing Information S1, Figure S3.
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Considering the Maximizing hypothesis set, 320 independent sam-
ples were required to obtain a 95% probability that the most sup-
ported model in the set was the generating model. There was little
variation by hypothesis because all hypotheses had the same area
of parameter space and length of parameter space adjacent to an-
other hypothesis. We also found that when separating hypotheses
by a probability of 0.1 and 0.2, only 40 and 20 samples, respec-
tively, were needed to obtain a 95% probability. Thus, as probabili-
ties are further from equal (p,,, = py = p,, = 0.333), the easier it is to
discriminate among the hypotheses in the Maximizing set with high
probability.

Considering the Traditional hypothesis set, 10 independent sam-
ples were needed to obtain a 95% probability that the most supported
model in the set was the generating model for the crepuscular, diur-
nal and nocturnal hypotheses (Figure 3; Supporting Information S1,
Figure S3). There was considerably more model uncertainty for the
traditional cathemeral hypothesis. This hypothesis required 640
samples to achieve the same probability. However, when separating
hypotheses by a probability of 0.1 and 0.2, only 80 and 40 samples
were required respectively. Thus, in cases where traditional cathem-
eral hypothesis probabilities are more equal, less data are needed to
identify the data generating hypothesis with high probability.

Considering the General hypothesis set, 160 independent
samples were required to obtain a 95% probability that the most
supported model in the set was the generating model for the cre-
puscular, diurnal and nocturnal hypotheses (Figure 3; Supporting
Information S1, Figure S3). The bimodal hypotheses required 640
samples, while 1280 samples were still not enough for the cath-
emeral general hypothesis to obtain a 95% probability of support.
Again, separating the hypotheses increases the ability to discrim-
inate among them. Since these hypotheses have less parameter
space and more adjacency to other hypotheses parameter space,
discriminating among them will require larger sample sizes compared
to hypotheses of the other sets. For the cathemeral general hypoth-
esis, there is also higher implicit variance in the probabilities as they
get closer to 0.5, which also makes it harder to discriminate against
the other hypotheses.

Considering the Selection hypothesis set, 1280 independent
samples or more were required to obtain a 95% probability that the
most supported model in the set was the generating model (Figure 2;
Supporting Information S1, Figure S4). The twilight selection hy-
pothesis was more easily identified as the generating model for
smaller sample sizes because it has the largest parameter space area.
These results would suggest this hypothesis set to be only moder-
ately useful to many realistic sample sizes. However, looking at how
the probability of the generating model being most supported varies
throughout the parameter space, we see a large set of parameter
values where it is easy to identify the generating model (probabil-
ity near 1) at a sample size of 100 (Figure 2). The ability to identify
the generating model in this hypothesis set and all others depends
strongly on how close the true probabilities are to one or more other
hypotheses, which depends on the area of parameter space for the
hypothesis (Supporting Information S1, Figure S5).

3.3 | The unconstrained model

What is the benefit of constraining model parameters? In other
words, why not fit an unconstrained multinomial model, which can
more easily be specified hierarchically to link probabilities of activ-
ity to spatial temporal covariates (see Gallo et al., 2022)? The main
reason is that our aim is to focus on a priori definitions of diel phe-
notypes, so that we can offer them as hypotheses to be evaluated
using empirical data. By constraining parameters, we can focus on the
hypothesis and not simply a change in probabilities. Considering in-
ference across data analysis units (multiple y values pertaining to dif-
ferent study areas or sampling periods) or studies allows an accurate
interpretation of diel niche switching. Second, for a given hypothesis,
model parameters will be more precise because of the constraints.
Thus, even with small sample sizes, parameter estimates will be more
precise compared to a model with unconstrained parameters. Lastly,
we do not need to ignore 